[bookmark: _GoBack]#!/usr/bin/sh
AGE="$0 -f directory
$0 -d directory
$0 -d -f directory

-f rename files
-d rename directories
"

usage ()
 {
 print -u2 "$USAGE"
 exit 1
 }

pathname ()
 {
 # function provided for the student
 print -- "${1%/*}"
 }

basename ()
 {
 # function provided for the student
 print -- "${1##*/}"
 }

find_dirs ()
 {
 # function provided for the student
 find "$1" -depth -type d -name '* *' -print
 }

find_files ()
 {
 # function provided for the student
 find "$1" -depth -type f -name '* *' -print
 }

my_rename()
 {
 # the student must implement this function to my_rename
 # $1 to $2
 # The following error checking must happen:
 # 1. check if the directory where $1 resided is writeable,
 # if not then report an error
 # 2. check if "$2" exists -if it does report and error and don't
 # do the mv command
 # 3. check the status of the mv command and report any errors
 #:
 # print "my_rename: [$1] ==>> [$2]"
 echo "Trying: myrename $1 $2"
 dir=`dirname "$1"`
 if [! -w "$dir"]; then
 echo "$dir: Directory not writable"
 return
 fi

 if [-e "$2"]; then
 echo "$2: Exists, cannot rename"
 else
 mv "$1" "$2"
 if [$? != 0]; then
 echo "mv: failed, return code=$?"
 fi
 fi

 }

fix_dirs ()
 {
 # The student must implement this function
 # to actually call the my_rename funtion to
 # C
 # changing all of the spaces to -'s
 # if the name were "a b", the new name would be a-b
 # if the name were "a b" the new name would be a----b
 #:
 # changing all of the spaces to -'s
 # if the name were "a b", the new name would be a-b
 # if the name were "a b" the new name would be a----b
 #:
 echo "Fixing dirs starting at: $1 ..."
 #find_dirs "$1"
 IFS=";"
 set -A dirs "$(find_dirs "$1")"

 for dirpath in "${dirs[@]}"
 do
 parent=`dirname "$dirpath"`
 olddirname=`basename "$dirpath"`
 newdirname=`print $olddirname | tr ' ' '-'`
 olddir=$dirpath
 newdir="$parent/$newdirname"
 #print "[$olddir] ==>> [$newdir]"
 my_rename "$olddir" "$newdir"

 done
 }

fix_files ()
 {
 # The student must implement this function
 # to actually call the my_rename funtion to
 # change the name of the file from having spaces to
 # changing all of the spaces to -'s
 # if the name were "a b", the new name would be a-b
 # if the name were "a b" the new name would be a----b
 #:
 echo "Fixing files under $1 ..."
 IFS=";"
 set -A files "$(find_files "$1")"
 # echo ${files[0]}
 # echo ${files[1]}
 # echo ${files[2]}

 for fileparts in "${files[@]}"
 do
 IFS="|"
 set -A parts $fileparts
 #print "[${parts[0]} -- ${parts[1]}]"
 dir=${parts[0]}
 oldfilename=${parts[1]}
 newfilename=`print $oldfilename | tr ' ' '-'`
 #print "[$newfilename]"
 oldfile="$dir/$oldfilename"
 newfile="$dir/$newfilename"
 #print "[$oldfile] ==>> [$newfile]"
 my_rename "$oldfile" "$newfile"
 done
 }

WFILE=
WDIR=
DIR=
if ["$#" -eq 0]
 then
 usage
 fi

while [$# -gt 0]
 do
 case $1 in
 -d)
 WDIR=1
 ;;
 -f)
 WFILE=1
 ;;
 -*)
 usage
 ;;
 *)
 if [-d "$1"]
 then
 DIR="$1"
 print
 else
 echo "$1 does not exist ..."
 exit 1
 fi
 ;;
 esac
 shift
 done

The student must implement the following:
- if the directory was not specified, the script should
print a message and exit
if ["$DIR" = ""]
then
 echo "Directory was not specified"
 exit 1
fi

- if the Directory specified is the current directory, the script
print a error message and exit
if ["$DIR" = "$PWD"]
then
 echo "Directory '$DIR' (current directory) is not allowed"
 exit 1
fi

- if the directory specified is . or .. the script should print
an error message and exit
if [["$DIR" = "." || "$DIR" = ".."]]
then
 echo "Directory '.' or '..' is not allowed"
 exit 1
fi

- if both -f and -d are not specified, the script should print a
message and exit
#
if [["$WDIR" = "" && "$WFILE" = ""]]
then
 echo "Neither -f nor -d was specified; not allowed"
 exit 1
fi

if ["$WDIR" -a "$WFILE"]
 then
 fix_files "$DIR"
 fix_dirs "$DIR"
elif ["$WDIR"]
 then
 fix_dirs "$DIR"
elif ["$WFILE"]
 then
 fix_files "$DIR"
 fi

