
 1

 Compiler Project for CPSC323

The programming assignments are based on a language called "Rat15su" which is described as
follows. The Rat15su language is designed to be easy to understand. It has a short grammar and
relatively clean semantics.

 RAT15SU
1) Lexical Conventions:
The lexical units of a program are identifiers, keywords, integers, reals, operators and other
separators. Blanks, tabs and newlines (collectively, "white space") as described below
are ignored except as they serve to separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords, reals and
integers.
<Identifier> is a sequence of letters and digits
The first character must be a letter and the last character CANNOT be a digit
 Upper and lower cases are same.
<Integer> is an unsigned decimal integer i.e., a sequence of decimal digits.
<Real> is integer followed by “.”and integer, e.g., 123.00
Some identifiers are reserved for use as keywords, and may not be used otherwise:
 e.g., int, if, else, fi, return, read etc

2) Syntax rules

The following BNF describes the Rat15SU.
<Rat15su> ::= $$ <Opt Function Definitions> $$ <Opt Declaration List> <Statement List> $$
<Opt Function Definitions> ::= <Function Definitions> | <Empty>
<Function Definitions> ::= <Function> | <Function> <Function Definitions>
<Function> ::= function <Identifier> (<Opt Parameters>) <Opt Declaration List> <Body>
<Opt Parameters> ::= <Parameters> | <Empty>
<Parameters> ::= <Parameter> | <Parameter> , <Parameters>
<Parameter> ::= <Identifier> <Qualifier>
<Opt Declaration List> ::= <Declaration List> | <Empty>
<Declaration List> := <Declaration> ; | <Declaration> ; <Declaration List>
<Declaration> ::= <Qualifier > <IDs>
<Qualifier> ::= integer | boolean | real
<IDs> ::= <Identifier> | <Identifier>, <IDs>
<Body> ::= { < Statement List> }
<Statement List> ::= <Statement> | <Statement> <Statement List>
<Statement> ::= <Compound> | <Assign> | <If> |<Return> | <Write> | <Read> | <While>
<Compound> ::= { <Statement List> }
<Assign> ::= <Identifier> = <Expression> ;
<If> ::= if (<Condition>) <Statement> fi |
 if (<Condition>) <Statement> else <Statement> fi
<Return> ::= return <Expression> ;
<Write> ::= write (<Expression>);
<Read> ::= read (<IDs>);
<While> ::= while (<Condition>) <Statement>
<Condition> ::= <Expression> <Relop> <Expression>

 2

<Relop> ::= == | != | > | <
<Expression> ::= <Expression> + <Term> | <Expression> - <Term> | <Term>
<Term> ::= <Term> * <Factor> | <Term> / <Factor> | <Factor>
<Factor> ::= - <Primary> | <Primary>
<Primary> ::= <Identifier> | <Integer> | <Identifier> (<IDs>) |
 (<Expression>) | <Real> | true | false
<Empty> ::=

<Identifier>, <Integer>, <Real> are token defined above

3) Some Semantics
 Rat15su is a conventional imperative programming language. A Rat15su program

consists of a sequence of functions followed by the "main body" where the program
executes.

 All variables and functions must be declared before use.
 There is an implied expressionless return at the end of all functions; the value returned by

expressionless return statement is undefined.
 Arithmetic expressions have their conventional meanings.
 Integer division ignores any remainder.
 Type casting is not allowed (e.g., assigning an integer to a real variable)
 No arithmetic operations are allowed with booleans (e.g., true + false)
 Others as we will define during the session

4) A sample Rat15su Program

$$
function convert (fahr integer)
{
 return 5*(fahr -32)/9;
}

$$
 integer low, high, step;

 read(low, high, step);
 while (low < high)
 { write (low);
 write (convert (low));
 low = low + step;
 }
$$

 3

 VERY, VERY IMPORTANT !!!

 For each programming assignment, you should turn in the following:

1) A hardcopy of
 a) About 2 pages of documentation including
 i) your name and your partner’s name
 ii) Problem Statement
 iii) How to use your program (very important)
 iv) Discuss the design of your project and choice of the algorithms
 v) Describe the limitations of your program (e.g. maximum # of lines etc.) and any
 shortcomings.
 b) Source code listing with proper comments for each procedures, sections if
 necessary.
 c) Test cases. Find at least 3 test cases (< 5, < 10, > 10) and the results of the testing

2) You will also to submit a softcopy of all mentioned in (1) and executable file

(.exe) under DOS/WINDOW using the “submit” feature on Titanium.
Before submission, Zip your files and submit the “zipped” file.

Note: 1. I must be able to run your program in order to give you a grade.
 2. I will accept late project however, there will be some deductions:
 1 point deduction for the first day and 0.2 each day you are late
 (from max of 10). For example, if you are late for one week, then the
 maximum point you will get is 10 – (1 + 1.2) = 7.8
 3. If you turn in a program that cannot be run, there will be an automatic 2 points
 deduction.
 4. If you don’t turn in the documentation, there will be an automatic 2 points
 deduction.

Final Notes: - You will most likely not pass this course without doing the projects

- The projects are built on each other, so make sure that you do well the
 first project

