
Assignment 6
CMSC204

New concepts tested by this program
	Implement Graph Interface
	Use Graph to maintain a network of Friends
	Create and use a generic class

Social networks are everywhere!  They connect people with other people.  There is an internet meme called “The Six Degrees of Kevin Bacon”, which describes how movie actors are connected, directly or indirectly, with Kevin Bacon.  Surprisingly, very short chains exist between any pair of actors, even obscure ones. For more information, see The Oracle of Kevin Bacon.

[bookmark: _GoBack]You will be creating an application to maintain a network of friends. Follow the interfaces, the below specifications, and the JUnit test files.

Data Element – Friend (Vertex)
Create a Friend class that holds the first name, last name and hometown and the traditional methods (constructors, getters/setters, toString, etc.).  It will implement the Comparable interface.  This is the class header:
	public class Friend implements Comparable<Friend>

Data Element – Edge<T, S>
	Create a generic class Edge that can represent the edge of any Graph.  T represents the data type of the first vertex and S represents the data type of the second vertex. The class must implement Comparable.  The class stores references to both vertices and the traditional methods (constructors, getters/setters, toString, etc.), and a compareTo, which compares two Edge objects. Since this is a undirected graph, an edge from A to B is equal to an edge from B to A. This is the class header:
	public class Edge<T extends Comparable<T>, S extends Comparable<S>> implements   Comparable<Edge<T,S>>

The Data Structure – FriendGraph, implements GraphInterface
Create a FriendGraph class that implements the GraphInterface given you.  Graph<V,E>.  V is the vertice type, E is the edge type.  You will need to decide how to store the graph, use an adjacent matrix or adjacency list.  This is the class header:
	public class FriendGraph implements Graph<Friend, Edge<Friend, Friend>>

The Data Manager – implements DataManagerInterface
Your Data Manager will hold an object of your FriendGraph. Implement the DataManagerInterface. There are methods to populate the graph (read from the participants and friends files), add a participant (vertices), add a friend (edge), list friends of a participant and list friends of friends of a participant.   You may add any methods as needed for your design.
Populating the Data Structure
You will be reading from two files:  Participants.txt and Friends.txt.
The Participants.txt holds the information for the individual participants (vertices), and is in the following format:
FirstName:LastName:Hometown (delimiter of “:”)
[image: ]

The Friends.txt holds the information for the friends of each participant (edges), and is in the following format:
FirstName:LastName:# of friends:FriendFName:FriendLName:FriendFName:FriendLName: . . .
[image: ]
This is an undirected graph which means that if there is an edge between Ann Abbott and Larry Lobster, then there is an edge between Larry Lobster and Ann Abbott.  So that after the file has been read in, Ann may have more than the 3 friends listed here (Mark Miller lists Ann Abbott as a friend as well).
After reading these files, you will have an initial set of vertices and edges in your FriendGraph.

The GUI
Choose a Profile  - JComboBox
Display all the available participants in the JComboBox (in alpha order by last name).  When the user selects one of the participants, display the first name, last name, hometown and friends.  Populate the JComboBox for Add a Friend to include all participants except for the selected participant and the friends of the participant (in alpha order by last name).

Show Friends of Friends Button
Display all of the friends of the friends of the participant (in alpha order by last name, no duplicates).  Do not include the participant or the friends of the participant.
Add a Friend Button
Select one of the participants in the Add A Friend JComboBox.  Add the friend to the participant (edge).  The participants Friends text area will be updated to show the new friend.  The Add A Friend JComboBox will no longer display the participant selected.
Add new Profile Button
Enter information for the first name, last name and hometown.  Add the new participant (vertice) to the graph.  Update the Choose a Profile and Add A Friend JComboBoxes to include the new participant.
Exit Button
The program will terminate.

Examples:
Read from file – list all participants in ComboBox for Choose a Profile

[image: ]

[image: ]

Chose Derik Dunning:  List info in FirstName, LastName, Hometown and all Friends in Friends text area (in alpha order by last name)

[image: ]

The Add A Friend Combo box is filled with all participants (in alpha order by last name) except for Derik and his friends:

[image: ]



When Show Friends of Friends Button is selected, show all Friends (in alpha order by last name) of the selected profile’s friends (no duplicates).  The original Friends and the selected profile should not be listed.

[image: ]

Add a friend:
[image: ]



Eric Epstein now shows up in Friends and is removed from the ComboBox to Add a Friend

[image: ]

Friends of Friends is updated with push of button.

[image: ]



Create new profile:

[image: ]

New profile is added (in alpha order by last name) to ComboBoxes

[image: ]


Program Grade Sheet
Assignment #6
CMSC204

Name 	____________________________      Blackboard Date/Time: _______________

DOCUMENTATION	(20 pts)
     Javadoc generated for all student created classes:					4 pts    _____
     JUnit Test Class								10 pts    _____
		Implement the STUDENT methods of DataManagerTest
		Create a JUnit test for your FriendGraph -  FriendGraphTest
    UML Diagram									6 pts    _____
PROGRAMMING	(80 pts)
     Programming Style
     Internal class documentation (within source code)					4 pts    _____
	Class description using Javadoc						  
	Author’s Name, Class, Class Time, @author					  
Methods commented using Javadoc, @param, @return					  
     Accuracy
	Public tests – DataManagerTest						6 pts    _____
	Your tests - FriendGraphTest						8 pts    _____
Private tests								10 pts  _____	
     Program Details
1. Friend									4 pts    _____
a. holds the first name, last name and hometown and the traditional 
methods  - constructors, getters/setters, toString, etc.
b. implements the Comparable interface
c. class header:
		public class Friend implements Comparable<Friend>
2. Edge<T,S>								4 pts  _____
a. generic class 
b. implements Comparable
c. stores references to both vertices and the traditional methods - constructors, getters/setters, toString, etc
d. class header:
public class Edge<T extends Comparable<T>, S extends Comparable<S>> 
implements   Comparable<Edge<T,S>>
3. FriendGraph								  16 pts  _____
a. implements Graph Interface
b. use an adjacent matrix or adjacency list to store graph 
c. class header:
	public class FriendGraph implements Graph<Friend, Edge<Friend, Friend>>
4. Data Manager								  8 pts  _____
a. Contains object of FriendGraph to store all data
b. Implements the DataManagerInterface
5. GUI details								  20 pt  _____
a. Display profile.  User can select a participant from list in alpha order and
Display all info related to participant including friends
b. Use FileChooser to select files
c. User can choose to see friends of friends (alpha order, no duplicates)
d. Add a friend.  User can choose from list of available participants
(alpha order, no duplicates, no current friends), friend list is updated
e. Add new profile.  User can input info and create new profile.
(list of participants is updated)
Total										100 pts  _____ 
image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

image3.png

image4.png

